System Design Project Technical Specification

Group 2A

1 Introduction

The robot F.R.E.D was designed as to meet requirements given in the System Design
Project website by The University of Edinburgh, which is assigned to third year Informatics
students. The final version of our robot has to be able to play a two-a-side football game,
similar to the Robocup competition small sized league.

The requirements are as follows:

e The robot must be able to move in any direction.

The robot must be able to rotate.

The robot must be able to kick the ball to various distances ie. pass or shoot.

e Moving with the ball is not allowed.

The robot must be able to play an attacking or defending role.

The robot must be able to be fit in a box with the dimensions 20cm x 18cm x 18cm.



2 Overall Architecture

2.1 Movement

A simple four-wheeled holonomic design was chosen for F.R.E.D. A wheel is attached to
each of the four lightweight motors, located on each side of the cubic model. The firmware
allows an external system to control each wheel independently, meaning it allows for fully
free holonomic motion (It is possible to use different motor powers to achieve motion where
axial rotation is independent from planar motion).

2.2 Kicking

During a game of two-a-side football, each robot has to be able to act in a defensive role
by somehow taking ownership of the ball from the defence area and passing it towards its
team-mate. F.R.E.D is unique in the way that he does not have a grabber, but instead a
propeller-like kicker. This is located at the front-facing side of F.R.E.D. The kicker uses
two motors, located on the left and right sides of F.R.E.ID, which link to the kicker by
several gears situated across the front of F.R.E.ID. Using gearing and two motors increases
the power of F.R.E.D’s kick. This design was chosen in order to be an effective defensive
player, as well as make powerful, accurate shots when attacking.

3 Hardware

3.1 Basic Hardware

F.R.E.D was designed in a way that allows one to build the ”basic” version of F.R.E.ID
and then expand upon it. An extensive guide on how to build the basic Box design that
moves around can be found at:

http://fred.rovder.com/building.html



3.2

Extended Hardware

Our specific version of F.R.[E.D is a defensive robot with a propeller designed to deflect
the ball from its path to our goal. These are the additional components used:

Part Location on Robot Amount
Power Functions Medium Motor | Left and Right sides 2
24 Teeth Gear Across front-facing side, attached | 8
to motor
40 Teeth Gear Across front-facing side, attached | 2
to motor
Arduino Motor board Inside box 1
3.3 Movement

3.4

An Electric Technic Mini-Motor 9v was connected at the base of each of the four
sides of the robot, attached to a bi-directional wheel.

The Electric Technic Mini-Motor 9v motors are a slightly older model of motor,
however we have found them to be reliable and simple to use. These motors provide
high RPM at the cost of torque, which, combined with the motor multiplexor board,
made the fastest robot. The Electric Technic Mini-Motor 9v motors are also very
small, therefore allowing more room for further modifications to the robot and simple
replacement in case of failure.

The small grey bi-directional wheels were one of two choices which would allow for
holonomicity. We considered the larger yellow holonomic wheels, but those proved
too large and the motors were not able to produce enough torque to move F.R.E.D.

Kicking

The kicker is similar to that of a propeller, which is large and stable enough to enable
for powerful kicks. F.R.[E.D is fundamentally a defence robot, so accuracy was not
of high priority.

The kicker works as a spinning mechanism. The direction of spinning is determined
by the position of F.R.E.D to the ball. The direction of spinning will change such
that it will always kick towards the opponents half. This increases the chance of a
goal against the opponent and decreases the chance of an own goal. This spinning
mechanism is controlled by the Strategy System.

Using two motors to control the kicker maximises the power of the kicker.



e Gearing the kickers to higher rotational speed adds some accuracy to F.R.E.ID’s kicks.
This is because F.R.E.ID will most often face the ball as it approaches it. The way
‘sphere impacts’ work in physics require the kickers to hit the ball as soon as it is
within reach. The further "through” the propeller kicks the ball on impact, the less
accurate the kick will be. (It’s similar to Billiards, when the Cue ball strikes a regular
ball ever so slightly on the side, the regular ball will move almost perpendicularly to
the direction of the Cue ball)

e The 24 and 40 teeth gears were used for gearing up at a 5:3 ratio.

e We used the Power Functions Medium Motors for the kicker as they are small and
lightweight. This aids quick movement. These motors were also chosen because they
are powerful enough for the kicker to shoot to the goal as well as pass to a team-mate.

4 Firmware

Firmware functions and descriptions are shown in Appendix A.

5 Communication Between PC and Robot

5.1 Introduction

The communication system for the robot implements methods that are called by the Strat-
egy Module. After being called by the Strategy Module, the methods send the appropriate
commands to the robot’s Arduino via the provided Ciseco SRE Stick.

5.2 Connecting

Once the Strategy module is turned on, it automatically creates a communications class.
This class will attempt to reach Fred by sending ”ping” to all the available ports and
listening to ”pang”. Once "pang” is received, the class keeps that port open and uses it for
all further communication. This whole process is done on a different thread, so the GUI
will remain responsive while the ports are being scanned.



5.3 Command Set

Each of the methods in the Communications class calls the CommandSender method with
the "args” being whatever the strategy module is inputting. Implementation of these meth-
ods can be found in brobortdriver.src.robot.Fred. The command each method sends
to the arduino can be seen below.

Method Command Input Parameters

holonomicMotion| r The powers of the motors (in order: front,
back, left, right).

halt h N/A

ping ping N/A

kick kick 1, 0 or -1 to spin kicker clockwise, not spin
or counter-clockwise respectively.

6 Vision System

6.1 Vision System Pipeline

The Vision System is composed of 5 pipeline stages. Each pipeline stage is described below.

6.1.1 Raw Input

The vision system has a RawInputInterface and an abstract AbstractRawInput class.
Extending the AbstractRawInput class enables you to add new raw input methods to the
system. The camera feed is one, a static image is another. Video files will be streamed into
the vision system in the future too. This is for debug purposes. Each raw input extends a
JPanel, which can be added to the GUI and should contain all the controls for that input
method. These can be seen in the Input Selection tab.

When implementing a raw input feed, one must carefully make sure that all errors are
handled within the scope of the class and that the class will either successfully pass a
BufferedImage to the next pipeline stage, or terminate the feed informing the user of the
error. This can be done via a message dialog.



6.1.2 Raw input multiplexer

At this stage of the pipeline, the various raw input methods are handled and the streamed
image is passed forward. This stage unites the GUIs of the individual Raw Inputs, adding
them to the vision control window, and it also make sure only one input stream is open
at any time. If everything up to this pipeline stage is implemented correctly, the expected
output should appear in the Preview window as a stream of images (video):

Preview =

6.1.3 Spot analysis

At this stage, the image is scanned for coloured spots using the following procedure:

1. The Raster of the BufferedImage is fetched (Using BufferedImage.getData()).
The Raster gives us access to the actual pixel RGB colour values.

2. Using Raster.getPixels, we then fill an array with time image’s RGBA values.
This array is preallocated on start-up, hence no memory allocation is needed.

3. The array of RGBA values is passed onto the ImageTools.rgbToHsv function, which
converts the RGBA values into a more analysis-friendly HSV format.

4. The next steps are repeated for every defined colour the vision system is detecting:

(a) Reset the private SDPColor[] found array to null values.



(b) Iterate over all the pixels, passing each one to the RecursiveSpotAnalysis.processPizel
method. This method recursively fills all potential spots, finding all the adja-
cent pixels of that colour. Every time a pixel is determined to be of the correct
colour, set its corresponding location in the "found” array to the colour. This
flag is used to make sure no pixel gets processed twice.

(c) Every cluster of pixels is recorded into an ArrayList.
5. In the end, all the ArrayLists of clusters of different colours (clusters also referred to

as Spots) are then put into a HashMap, the colour of the spots in the list being the
Key.

The final resulting HashMap is then passed onto the next stage of the pipeline. The pixels
detected as the colour ”"Pink” are highlighted here:

6.1.4 Distortion

The spots passed into this stage from the Spot Analysis stage are undistorted and turned
from pixel coordinates to actual centimetre coordinates. This is the sequence of operations
every Spot is forced to undergo:

1. Barrel Undistortion - Gets rid of the camera distortion.
2. Zoom - Zoom the picture in or out.
3. 3D Tilt - Removes distortion caused by camera being angled off-centre.

4. Rotation - Removes the rotation of the pitch.

7



5. XY Shift - Allows the user to centre the pitch.

There is no such thing as an ”Undistorted image preview”, since the image itself never
gets undistorted. What the system does provide though is a preview of how the distortion
affects a single frame:

Distortion Preview - | X

6.1.5 Robot Recognition

The undistorted colour spots reach the robot recognition stage, where the robot plate
patterns are detected.

This was by far the trickiest part to implement well and was incrementally developed over
four iterations:

1. Deterministic detection with team spots as plate bases - System found all
the team spots and tried to find surrounding spots to form plate. (Failed because
team spots were not always visible.)

2. Deterministic detection using plate outlines for clustering - System found all
plates and assumed all spots contained within that plate belonged to a single robot
(failed because plates were not always visible.)



3. Probabilistic detection - System detected spots and tried to solve the constraint
satisfaction problem describing the robot plates. (Failed because camera quality
sometimes detected several spots in place of a single spot, creating anomalous prob-
abilistic ghost robots.)

4. Deterministic brute force detection using non-team spots as plate base -
System used brute force of complexity O(n?) (in the amount of non-team spots) to
detect top plates by their primary colour spots. Then, using their locations, checked
for corresponding secondary spot and team spot in locations where it expected them
to be. (Succeeded)

In the end, the brute force detection performed much better than the others. This is be-
cause non-team spots had a much easier detectable colour. So we set the thresholds for the
non-team spots very strictly and loosened the thresholds on team-spots. Since plates are
detected using non-team spots, only real plates are detected (no false positives). Detection
is so accurate, no smoothing of any kind is required. Once the robots are detected, they
are drawn onto the RobotPreview window:

Robot Preview

Note that the further the robots are from the centre of the pitch, the less the square lines up
with the spots. This is because of the robots’ heights, which distort their actual locations
when viewed at an angle. The offset is caused by removing this distortion.



6.2 Design Decisions - Justification
6.2.1 Post Detection Distortion

In order to minimize computation, undistorting takes place after colour spots have been
detected. On average, about 20 to 30 spots will be detected with any frame. Only these
30 spots will be undistorted. This is more efficient than undistorting the image and then
looking for spots, because the image is approximately 300 000 pixels. Undistorting each
pixel is a waste of computation power.

6.2.2 Arrays

The code takes BufferedImage inputs, gets the Raster from it and turns the image into
an array of rgb values. These values are then used in the computations, bypassing having
to call the BufferedImage methods to access the colours, which are very slow and allocate
unnecessary objects. The arrays themselves are recycled and only need to be allocated on
start-up, so no per-frame memory allocation is needed. Being single dimensional arrays of
integers, the integers are all located next to each other in physical memory, which greatly
improves memory access times by avoiding pointer chasing and utilizing spacial locality
optimizations of the hardware.

6.2.3 Pipeline

While bashing everything together into one massive system may have been simple at the
start, splitting the system into pipeline stages provides several advantages:

1. Code can be tested independently of the other parts of the program.
2. If one stage of the pipeline is not performing well, it can be replaced easily.

3. If necessary, this approach allows dynamic swapping of pipeline stages in and out of
the pipeline. One may implement (for example) three different spot analysis systems,
where each one is good for a different situation. A smart overviewing system could
track the efficiency of each stage and swap them in and out based on the current
state of things.

4. One may also take a leaf out of the book of airplane on-board computers and run

several systems in parallel, unifying their results, filtering away outliers.

6.3 Connecting the Vision System to your code

To run the Vision System with your code, follow these instructions:

1. One or more of your classes should implement the VisionListener interface. These
classes are then able to receive output from the Vision System.

10



2. Instantiate the Vision class. Located in vision.Vision. Instantiate it with
Vision vision = new Vision();

3. Add your VisionListener classes as listeners: vision.addVisionListener (yourClassHere).

7 Strategy

The Strategy module is the part that makes F.R.E.D play football. It consists of a timer,
which launches a method every 100 milliseconds (Referred to from now on as ”Strategy
Iterations”). This method takes a look at the current world state (provided by the Vision
System) and determines the best course of action. Once it decides, it sends the appropriate
commands to F.R.IE.D.

7.1 Behaviour Modes

Since the game is fairly simple, there was no need for extra clever strategy. Due to the
simplicity of the game, there is only a very small amount of different situations that can
occur in the game. This makes it possible to identify the best behaviour for each situation
and hard code the most desired behaviour for each of them. There are a total of 4 types of
behaviour (Referred to from now on as ”Behaviour Modes”), which cover all of the game
states:

1. Attack - Kick the ball.
2. Defend - Hold position between ball and goal.

3. Safe - Go to our goal without touching the ball. (A precautionary measure to make
sure no own goals are scored.)

4. Shunt - When the ball gets stuck in a corner, defend it. (F.R.E.ID is unable to fetch
a cornered ball, so it will make sure nobody else can either, forcing a ball reset.)

7.2 Decision Making

The main thing the Strategy module needs to be able to do, is decide which of the 4
Behaviour Modes it should follow. For every Strategy Iteration, the Strategy Module
follows the following flowchart in order to decide the most appropriate Behaviour Model.

11



IS FRED CLOSER TO No

OUR GOAL THAN THE =~ e N SAFE!
BALL IS?
Yes
i
Yes DOES THE ENEMY No
Pt HAVE THE BALL?
WAS FRED’S LAST
ACTION DEFEND ?
No
Yes
v
i No IS THE BALL CURRENTLY
I MOVING AWAY FROM
DEFEND! OUR GOAL?
Yes
H
No IS THE BALLIN A ‘
KICK! D —— CORNER? /
KICK: ’
Yes
SHUNT!

7.3 Strategy Tools

In order to make everything clear and modular, there are several tool packages imple-
mented, which are very low-level oriented and are used by a higher behaviour modelling
system. These are the holonomicDrive package and the navigation package.

12



7.3.1 Holonomic Drive

Holonomic motion was implemented using a holonomic motion matrix. To make sending
commands to F.R.E.D easy, the holonomicDrive.HolonomicMove class was implemented.
This class provides the methods setDesiredHeading(), setRotation() and perform(), which
should be used to make F.R.E.D move.

Keep in mind that the VectorGeometry object passed to setDesiredHeading() must be
a relative direction "from F.R.E.D’s point of view” and NOT the desired location on the
pitch. The HolonomicMove class also does not ensure avoiding obstacles. It simply makes
F.R.E.D move.

7.3.2 Navigation

The Navigation System should be thought of as a black box. The desired destination is
put into it and it will spit out the direction in which F.R.[E.D should move right now. It
calculates the shortest path from where F.R.[E.D is, to where we want him to be, avoiding
obstacles and obeying rules.

The Navigation System uses a combination of Potential Fields and A* search to find the
path:

e Potential Field Navigation - The idea is that the whole pitch gets transformed
into a potential field. Obstacles (such as robots, defence areas, and walls) are made
repulsive and the desired destination is made attractive. The system then simulates
F.R.E.D "fall” through this potential field. This way F.R.E.D is forced to follow the
potentials to a potential minimum.

— Pros: Continuous and fast.
— Cons: Unreliable for long distances (getting trapped in local minima).
e A* Navigation - Dividing the pitch into small squares of area roughly 10cm x 10cm
and running standard A* search from the robot’s location to the destination.

— Pros: Reliable and fast.

— Cons: Inaccurate for short distances (maximum accuracy of destination is de-
termined by the square size, since A* search is Discrete).

In order to avoid the cons and make use of the pros of each method, the Navigation System
implements and uses both. With every call to Navigator.move() (which happens every
Strategy Iteration) the Navigator class decides which of the two navigation systems to
use. Since they both implement the same interface, they can be swapped in and out of
the pipeline seamlessly. The interfaces also make potentially implementing and integrating
more systems in the future very simple.

13



7.4 Modelling the Behaviour

To model all of the behaviour, we use a system of dynamic points (points that automatically
adjust themselves) and Actions (recursive finite state machines implemented using a model
called the Tik Tok Model). First, it will be explained what these are and then how they
are tied together.

7.4.1 Dynamic Points

The idea of Dynamic Points is that you can define an arbitrary point by specifying how
to calculate its X and Y coordinates from a DynamicWorld object. One can create a class,
which implements the ActionPoint interface. This means it will provide the methods
getX(), getY() and recalculate(), which you get to implement yourself. The recalculate
method should contain the ”instructions” on how to calculate that point. So one can
implement points such as:

e BallPoint - Follows the ball around.

e DangerPoint - The most dangerous thing on the pitch. (If the ball is visible, it
becomes the ball. If not, becomes the most likely ball holder. Otherwise it becomes
the closest enemy to the goal.)

e DefencePoint - The point located exactly halfway between the goal and a DangerPoint.

The reason this is useful is that you can then pass these ActionPoints to the Robot’s
Navigation class like so:

Fred .MOTION.setDestination(new DefencePoint());
Fred.MOTION.setHeading(new DangerPoint());

Making these two calls to Fred.MOTION will make F.R.E.D follow the DefencePoint, wher-
ever it may be and make F.R.E.D face the DangerPoint, avoiding obstacles and taking the
shortest optimal path. F.R.[E.D will continue to do this until told otherwise.

Coincidentally, this is exactly what the 'Defend’ Behaviour Mode is. These two lines are
all it takes to describe the defending strategy.

7.4.2 Actions

We have seen how ActionPoints work, the remaining question is, what code tells F.R.E.[D
to follow which point? That’s where Actions come in.

14



Actions are objects that extend the TikTokBase class, meaning they implement the
TikTokInterface and require implementing the tok() method. Instantiating an Action
and setting it as F.R.[E.D’s current action via Fred.ACTION.setAction(yourActionHere)
will ensure that the tok() method of your class will be called with every Strategy iteration.
Within this method one should check what is going on in the game and take appropriate
action. It is these tok() methods that make calls to Fred.MOTION and set F.R.E.D’s desti-
nation and headings to make him move.

Actions work like a finite state machine. Finite state machines may have sub-machines
within them and Actions can do something similar. An Action can create a new action and
set it as it’s sub-action. This means that until the sub-action is finished, the tok() method
of the parent action will be bypassed and the system will use your action’s tik() method
to call the sub-action. This is all done automatically. If you want to call a sub-action, you
can do it within your action by calling this.enterAction(yourSubaction).

The only problem of chaining actions is that parent actions have no way of ”switching” to
a different sub-action without the current sub-action terminating. This may be necessary
in some higher level behaviour definition action (for example the Behave action, which is
basically the topmost action of F.R.E.D’s behaviour - it plays football). For this you may
extend the ActionDispatcher class, which allows you to check different world conditions
before allowing the sub-actions to continue. A great example of this is the Behave class.

15



8 Appendix A: Functions in Firmware - firmware.ino
File

Function Description

void setup() Sets up the motors and board.

void loop() Reads input from serial and launches
appropriate function.

void dontMove() Stops F.R.E.D. (only wheels. If there

are other motors attached, this will not
affect them.)
void motorControl(int motor, int | Sets the speed of the specified motor to

power) the specified power. Power must be in
range from -255 to 255 (0 means stop).

void pingMethod() Sends "pang” over the serial port.

void completeHalt() Stops absolutely everything (all mo-
tors).

16



